Sketchy Key and Discussion to Old Exam 1

You are expected to provide more detailed answers in real exams

Q1a \(E(y_t) = E(\epsilon_t + \theta \epsilon_{t-1}) = 0 \)

Q1b \(\text{var}(y_t) = \text{var}(\epsilon_t + \theta \epsilon_{t-1}) = \sigma^2 + \theta^2 \sigma^2 \epsilon + 2 \theta \rho \). Notice that \(\text{cov}(\epsilon_t, \epsilon_{t-1}) = \rho \neq 0 \).

Q1c \(\text{cov}(y_t, y_{t-1}) = \text{cov}(\epsilon_t + \theta \epsilon_{t-1}, \epsilon_{t-1} + \theta \epsilon_{t-2}) = \rho + \theta \sigma^2 + \theta^2 \rho \). Notice that \(\text{cov}(\epsilon_{t-1}, \epsilon_{t-2}) = \frac{\rho}{\rho} \) since \(\epsilon_t \) is stationary.

Q1d yes, \(y_t \) is stationary because its mean and variance are constant, and autocovariance only depends on the lag.

Q1e yes, since \(\text{cov}(y_t, y_{t-j}) = 0, \forall j > 2 \). In words, \(y_t \) is erodic because the autocovariance decays toward zero sufficiently fast.

Q2a \(y_t = y_{t-2} + 0.4 + \epsilon_t \), where \(\epsilon_t \) is white noise

Q2b The characteristic equation is \(x^2 - 1 = 0 \), so characteristic roots are \(x_1 = 1, x_2 = -1 \). There is only one unit root.

Q2c Yes, \(y_t \) is trending because \(\phi_1 + \phi_2 = 1, \phi_0 \neq 0 \). See HW1.

Q2d No. Actually we should try \(\bar{y} = ct \), where \(c \) is unknown. That is, in this case the steady state is a linear trend, not a fixed point, because one unit root is present. (We should try quadratic trend as the steady state if two unit roots are present)

Q3a \(y_t = my_{t-1} + amy_{t-2} \)

Q3b Under the condition \(1 - m - am \neq 0, \bar{y} = 0 \).

Q3c Both characteristic roots should be less than one in absolute value

Q3d \(m^2 + 4am < 0 \), under which there are two conjugate complex characteristic roots, which give rise to sinusoidal behavior.

Q3e There is no unique answer. For example, we may add a white noise random shock \(\epsilon_t \) to the consumption function, which may represent something like animal spirit that affects consumption in a random fashion.
Q4a Since this is a five-point question, you can just say $\gamma_j = \phi_1 \gamma_{j-1} + \phi_2 \gamma_{j-2} + \phi_3 \gamma_{j-3}, \forall j \geq 3$. Notice that this equation does not hold for $j = 0, 1, 2$.

Q4b Let all shocks be zero except $e_t = 1$. Then we can simulate $y_t = 1; y_{t+1} = \phi_1; y_{t+2} = \phi_1^2 + \phi_2$

Q4c We can show the impulse response $\frac{dy_{t+1}}{de_t}$ follows the same deterministic difference equation as y. That means, in order for the impulse response to decay to zero—the steady state, we require that all the characteristic roots be less than one in absolute value.